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Abstract

The ionic model is shown to be applicable to all
compounds in which the atoms carry a net charge and
their electron density is spherically symmetric regardless
of the covalent character of the bonding. By examining
the electric ®eld generated by an array of point charges
placed at the positions of the ions in over 40 inorganic
compounds, we show that the Coulomb ®eld naturally
partitions itself into localized regions (bonds) which are
characterized by the electric ¯ux that links neighbouring
ions of opposite charge. This ¯ux is identi®ed with the
bond valence, and Gauss' law with the valence-sum rule,
providing a secure theoretical foundation for the bond-
valence model. The localization of the Coulomb ®eld
provides an unambiguous de®nition of coordination
number and our calculations show that, in addition to
the expected primary coordination sphere, there are a
number of weak bonds between cations and the anions
in the second coordination sphere. Long-range Coulomb
interactions are transmitted through the crystal by the
application of Gauss' law at each of the intermediate
atoms. Bond ¯uxes have also been calculated for
compounds containing ions with non-spherical electron
densities (e.g. cations with stereoactive lone electron
pairs). In these cases the point-charge model continues
to describe the distant ®eld, but multipoles must be
added to the point charges to give the correct local ®eld.

1. Introduction

It is an assumption of all bond models of chemistry,
models which have been widely and successfully used
for well over a century, that one can gain a good
description of the properties of a compound by ignoring
all but the nearest-neighbour bonding interactions. Yet,
calculations of inorganic structures based on realistic
interatomic potentials show that the electrostatic inter-
actions between second, third and even further neigh-
bours are important and cannot be ignored. The
apparent incompatibility between these two viewpoints
has been one of the reasons why chemical-bond models
have been sometimes viewed with suspicion. It is the

purpose of this paper to show that the two approaches
are not incompatible, since the Coulomb ®eld respon-
sible for the long-range forces naturally partitions itself
into localized regions which link neighbouring atoms
and which obey the same rules as those found empiri-
cally for chemical bonds. An examination of the beha-
viour of these links shows that long-range interactions
are mediated through the application of Gauss' law
around the intervening atoms. The electrostatic ®eld
thus provides a sound physical basis for the concept of
the chemical bond and allows many of its properties to
be rigorously derived.

In x2 we show that the only term that contributes to
the long-range forces is the electric ®eld produced by the
net charges on the atoms (the Madelung ®eld). In x3 we
show that this ®eld partitions itself into regions that link
neighbouring atoms and we derive a number of laws that
are obeyed by the electric ¯ux which threads these
regions. We then describe in x4 the empirical rules
obeyed by bond valences in inorganic solids and show, in
x5, that they are the same as those obeyed by the electric
¯ux. Details of the calculation of the electrostatic ¯ux
are described in x6, while x7 compares the ¯ux and bond
valences for a variety of strained and unstrained struc-
tures. Our conclusions are summarized in x8.

2. Crystal energy and the Coulomb ®eld

The energy of an inorganic solid consists of two terms, a
classical electrostatic energy determined by the distri-
bution of electric charge and a quantum mechanical
term that prevents individual atoms from collapsing into
each other (1)

W � Welectrostatic �Wqm: �1�
The quantum mechanical term Wqm is a short-range
interaction which not only describes the Fermi repulsion
between overlapping electron cores but, because it
depends on the details of the electron density distribu-
tion, includes the in¯uence of covalent bonding. In the
ionic model it is usually represented by a short-range
empirical potential. The electrostatic energy Welectrostatic
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can, in principle, be derived from the electrostatic ®eld
E, which is equal to the sum of the electrostatic ®elds of
the individual atoms Eatom. Eatom can in turn be repre-
sented by the sum of the three terms shown in (2).

Eatom � Emono � Emult � Elocal: �2�
In this equation Emono is the ®eld generated by the point
charge Q, which represents the net charge residing on
the atom and which is assumed to be situated at the
centre of the atom. Emono is given by (3).

Emono � Q=�4�"0r2�; �3�
where r is the distance from the atom centre and, in this
discussion, Q is measured in units of electron charge and
the units are chosen so that "0 is 1.0. If the electron
density of the atom is spherically symmetrical, Emono

gives a fully correct description of the ®eld generated by
the atom in the region outside the atom itself, i.e. in the
region where the electron density of the atom has fallen
to zero. This is the term that is responsible for the long-
range effects and is the term that will be examined in this
paper.

If the electron density is not spherically symmetrical,
the ®eld outside the atom can again be correctly
reproduced by adding as many point multipole terms as
necessary to the original point charge Q. These consti-
tute the term Emult, which can be exactly calculated if the
sizes and orientations of the multipoles are known. In
most cases the multipoles are small relative to Q and in
any case their ®eld drops off rapidly with distance. Even
if they make a signi®cant contribution to the ®eld in the
immediate neighbourhood of the atom, their contribu-
tion at distances of more than a few aÊngstroÈ ms from the
centre of the atom is negligible (Bouhmaida et al., 1997).

Emono and Emult thus give the exact electric ®eld
outside the atom regardless of the electron con®guration
within the atom. To obtain the correct ®eld inside the
atom requires the addition of the term Elocal, which can
be calculated if the electron density distribution is
known, but for the present it is suf®cient to note that
Elocal is, by de®nition, zero outside the atom.

The total electric ®eld in the crystal is obtained by
adding the contributions from all the individual atoms in
the crystal. At any particular point it will have contri-
butions from Emono of all the atoms in the crystal, but
only the immediately neighbouring atoms will contri-
bute Emult and Elocal terms. The energy associated with
these latter two terms can therefore be combined with
Wqm into a short-range term, leaving only Emono to
contribute to the long-range effects. The total energy
can thus be rewritten as

W � WMadelung �Wshort range; �4�
where WMadelung is the Madelung energy derived from
Emono and Wshort range includes the effects of Elocal and
Emult, as well as Wqm. In the classical interatomic
potential models that have recently proved so successful

(Catlow, 1997), Wshort range is represented by one of a
number of short-range analytical functions with para-
meters which are ®tted to the properties of the system.
Since all the long-range interactions are included in the
Madelung term WMadelung, they are correctly repre-
sented by the ®eld EMadelung =

P
Emono, which depends

only on the magnitudes and positions of the monopole
charges, Q.

The positions of the charges are assumed to be the
same as the experimentally observed positions of atoms,
but it is not so easy to see what the magnitudes of Q
should be because the charge on an atom depends on
how one de®nes an atom in the crystal. Various schemes
have been proposed for calculating atomic charge, for
example, Mullikan overlap populations or a space
partitioning (Bader, 1990). In the present work the most
appropriate de®nition of an atom is one that best meets
the following criteria:

(1) each atom must carry a net charge equal to (or
proportional to) the atomic valence (oxidation number);

(2) all the electron density in the crystal must be
assigned to at least one atom (but may be divided
between two or more atoms),

(3) subject to 1 and 2 above, the atoms have an
electron density which is as close to being spherically
symmetrical as possible in order to minimize Emult.

It is not necessary at this point to choose any parti-
cular de®nition of an atom, only to know that it is
possible to ®nd a de®nition that meets these criteria. For
example, the atoms might be treated as spheres. In this
case the radius of the sphere would be chosen to ensure
that criterion 1 is met. Cations would then have small
radii and anions large radii. There would be consider-
able overlap between atoms, but if all the atoms carry
their full charge, they must necessarily account for all
the electron density in the crystal, thus satisfying
criterion 2. The partitioning of electrons between atoms
in regions of overlap would be performed in such a way
as to best meet criterion 3. Any deviations from
spherically symmetric atoms would be accommodated
by the addition of point multipoles, but in most cases
these multipoles are likely be small and of high order,
particularly on the cation.

A justi®cation for believing that such a de®nition is
possible comes from the success of the two-body
potential models in predicting both the structures and
properties of inorganic crystals. In these models the
atomic charge is routinely assumed to be equal to the
formal oxidation state (Catlow, 1997). If such an
assumption had no physical basis, the model clearly
would not work.

3. The Madelung ®eld of a crystal, EMadelung

Consider the electrostatic ®eld, EMadelung, created by an
in®nite array of positive and negative point charges
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placed at the positions of each of the atoms in a crystal.
As has been pointed out by Bragg (1930), the lines that
represent the electric ®eld will not extend far in space,
because at an energy minimum the lines of ®eld will be
as short as possible. Looked at from another point of
view, the lines of ®eld must remain short since their
paths are not allowed to cross. All the lines of ®eld
starting at a positive charge will therefore terminate on
the nearby negative charges and vice versa. The collec-
tion of all lines joining two given charges de®nes a
region in space that represents the electrostatic link
between them and, since every point in space will lie on
a line of ®eld, every point must belong to one or other of
these link regions. Further, the boundaries between the
link regions are necessarily zero-¯ux boundaries. Thus,
EMadelung directly partitions space into a collection of
localized link regions separated by zero-¯ux boundaries,
as shown by the heavy lines in Fig. 1 for the (110) section
of TiO2 (rutile) which contains the Ti4+ and O2ÿ ions.

These link regions are characterized by the electro-
static ¯ux �ij connecting the two atoms i and j, given by
(5)

�ij �
Z

EMadelung:dA; �5�

where the integration is taken over any cross-sectional
area of the link region. These ¯uxes must obey Gauss'
law (6) around each atomP

j �ij �
H

EMadelung:dA � Qi; �6�
where the sum is taken over all links connected to Qi

and the integration is taken over any closed surface
surrounding Qi.

The law of conservation of energy can be applied to
this system if the potential differences between the
atoms can be calculated. To do this it is convenient to
treat each link as a capacitor Cij supporting a potential

difference Pij. The electric ¯ux �ij which threads this
capacitor must equal the charge qij on the capacitor
`plates', qij being those portions of the atomic charges of
i and j that contribute to �ij. Since each charge Qi will
contribute to a number of such links, the sum of all the
link charges qij will just be the total charge Qi

Qi �
P

j qij: �7�
The potential Pij across the capacitor is given by the
capacitor equation

Pij � qij=Cij: �8�
Since qij is equal to the ¯ux �ij, (8) can also be written as

Pij � �ij=Cij: �9�
The law of conservation of energy requires that the sum
of the potentials Pij around any closed loop be zero,
hence

0 �Ploop Pij �
P

loop �ij=Cij; �10�
where each loop will contain a number of links and the
¯ux of each is taken as positive or negative, according to
the direction in which it is traversed. Equations (6) and
(10) constitute the Kirchhoff equations for a system of
capacitors.

Since the electric potential is singular at a point
charge, the potential difference between a point positive
and a point negative charge will be in®nite and Cij will be
zero. This singularity can be avoided by replacing each
point charge by a closed equipotential shell and distri-
buting the charge Qi over this surface in such a way as to
leave the external ®eld unchanged. The link regions are
now bounded at their ends by that portion of the
charged equipotential surface on which their ®eld lines
start or terminate. These surfaces therefore act as the
plates of the capacitor carrying the charge qij. For this
arrangement Cij and Pij are ®nite and, in principle,
calculable.

The values of Cij, of course, depend on which equi-
potential surface is used to represent the atom. Since
these surfaces can be arbitrarily chosen, it might be
supposed that all the values of Cij could be arbitrarily set
to the same value so that they cancel in (10). However,
the number of charges for which the equipotential
surface can be arbitrarily chosen is always less than the
number of links between them. If there are N charges in
the array, the equipotential surfaces can only be chosen
in such a way that the N ÿ 1 links in the spanning tree
are assigned arbitrary values of Cij. For the remaining
links, i.e. the links that close the loops in the network, a
knowledge of only the topology is not suf®cient to
determine Cij. To ®nd these, the geometry of the array,
i.e. the positions of the charges, must also be known.

As mentioned above, the portion of the equipotential
surface on which the ¯ux lines start or end must,
according to Gauss' theorem, carry a charge equal to qij.

Fig. 1. A representation of the Madelung ®eld of rutile (TiO2) in the
(11Å0) plane (x,1 ÿ x,z). The light lines represent the ®eld lines, the
heavy lines show the zero-¯ux boundary that partitions space into
link (bond) regions.
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To ®nd �ij, therefore, it is only necessary to determine
qij. This can easily be performed if the charge is
uniformly distributed over the surface, which will be the
case if the surface is shrunk to a small sphere around the
position of the point charge, since here the ®eld is
essentially spherically symmetric. In this case qij is given
by

qij � QiAij=�4�r2
i � � QjAji=�4�r2

j �; �11�

where ri and rj are the radii of the equipotential spheres
and Aij is the surface area of that part of the equi-
potential sphere around i that forms the end boundary
of the link region between atoms i and j. The ¯ux can
then be found from the areas A calculated by deter-
mining the boundaries of the link regions on the equi-
potential surface, as described in detail in the Appendix.

Fig. 1 shows an exact representation of the Madelung
®eld from an array of point charges placed at the posi-
tions of the atoms in rutile, TiO2. The boundaries of the
link regions are shown with a heavy line. Such a locali-
zation of the ®eld is not incompatible with the long-
range nature of the electrostatic force. The mechanism
for the long-range interaction is through the application
of Gauss' law around each atom. As shown in Fig. 2, the
removal of an O2ÿ ion from the perfect lattice shown in
Fig. 1 results in a redistribution of the ¯ux. The ¯ux that
originally terminated on the missing anion now termi-
nates on anions in the second neighbour shell but, in
order to accommodate this new ¯ux, the anions of the
second neighbour shell must shed ¯ux to the fourth
neighbour shell and so on. A ripple of ¯ux relaxation
spreads out from any change made in the lattice, the
long-range effects being mediated through a redis-
tribution of the ¯ux around the intervening atoms in
accordance with Gauss' theorem. Thus, long-range

interactions are achieved by an inductive effect and are
quite compatible with the partitioning of the ®eld into
the localized link regions.

The distribution of ¯ux between the links is comple-
tely determined by the two electrostatic Kirchhoff
equations (6) and (10), provided that the topology of the
link regions is known, i.e. it is known which charges are
linked. Unfortunately, as pointed out above, the values
of Cij in (10) cannot be determined a priori, since they
depend on the geometry adopted by the array. The
factors which determine this geometry, and hence Cij, in
equilibrium structures are discussed in x5.

4. The bond-valence model

Before proceeding further it is useful to review the
properties of chemical bonds in inorganic compounds as
they have been determined empirically through a study
of known inorganic structures. The similarity between
these empirical rules and the properties of EMadelung

should be readily apparent.
Pauling (1929) was one of the ®rst in recent times to

apply the concept of a chemical bond to inorganic solids.
The tendency of cations to surround themselves with
anions in a way that provides local charge neutrality was
the basis of his electrostatic valence principle that
describes the behaviour of these bonds. Shortly after,
Bragg (1930) pointed out that this principle has a
graphic representation in the lines of electrostatic ®eld,
but the implications of this observation were not further
explored. In recent years the electrostatic-valence
principle has been elaborated into the bond-valence
model, an empirical theory that allows a quantitative
prediction of the geometry of many inorganic
compounds (Brown, 1992a). The theory treats a
compound as an in®nite network of atoms linked by
bonds. For crystals, this can be reduced to a ®nite
network comprising a single formula unit such as the
network of TiO2, whose graph is shown in Fig. 3. Each
line represents a different bond, so that Ti4+ is six-
coordinated and O2ÿ is three-coordinated. The bond-
valence model itself is restricted to compounds whose
bond graph contains two types of atoms, labelled cations
and anions according to the sign of their valence, with a
further formal restriction that bonds may only link ions
of opposite sign.

Each atom i in the graph is assigned a formal charge
equal to its atomic valence or oxidation state (Vi) and
each bond between atoms i and j is assigned a bond
valence (sij). The bond valence is determined by

Fig. 2. A representation of the Madelung ®eld of rutile in the (11Å0)
plane with one O2ÿ ion removed. The conventions are the same as
in Fig. 1.

Fig. 3. The bond graph of rutile (TiO2). The valences of the atoms and
theoretical valences of the bonds are shown.
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assuming that the valence of an atom is distributed as
uniformly as possible among the bonds that it forms, a
condition that is formally expressed by two network
equations. The ®rst, known as the valence-sum rule (12),
states that the sum of the valences of all the bonds
meeting at an atom i is equal to the valence of the atomP

j sij � Vi: �12�
The second equation is the condition that requires the
valence to be distributed as uniformly as possible among
the bonds in a way that is consistent with (12). It is
known as the equal valence rule and is formally achieved
(Brown, 1992b) by ensuring that the sum of all directed
bond valences around a closed loop is zero, as expressed
by P

loop sij � 0: �13�
These two equations can be used to predict a unique
bond valence sij (referred to here as the theoretical bond
valence) for every bond in the graph, as shown in Fig. 3.

Theoretical bond valences sij are often found
empirically to be very close to experimental bond
valences Sij calculated from the observed bond lengths
Rij using

Sij � exp��Ro ÿ Rij�=B�: �14�
Here Ro and B are empirical parameters whose values
for different bonds have been tabulated by Brown &
Altermatt (1985) and Brese & O'Keeffe (1991).

In many crystals the experimental and theoretical
bond valences are found to agree within the limits of
experimental accuracy, but there are a number of
structures in which they differ signi®cantly. The discre-
pancy between these values is given for a number of
typical compounds by �3 in Table 1. On examination,
structures with large �3 are all found to be subject to
additional constraints which cause the bonds to be
strained (Brown, 1992a). The most common constraints
are electronic anisotropies (e.g. Jahn±Teller distortions
around transition metals and stereoactive lone pairs
around main-group elements in lower oxidation states),
cation±cation or anion±anion repulsion (e.g. in hydrogen
bonds; Brown, 1995) and lattice incommensurations (e.g.
in perovskite layer compounds). Although the experi-
mental bond valences in these compounds do not obey
the equal valence rule (13), most continue to obey the
valence-sum rule (12). In this paper a structure is
assumed to be strained if the root-mean-square devia-
tion between the experimental and theoretical bond
valences, �3 = h(Sij ÿ sij)

2i1/2, is greater than 0.05 valence
units (v.u.).

5. Coulomb ®eld and chemical bonds

The parallels between the electrostatic ®eld model and
the bond-valence model should be apparent. The frag-

Table 1. Agreement between the bond ¯ux and bond
valences for compounds used in this study

ICSD = Collection code in the Inorganic Crystal Structure Database;
�1 = h(�ij ÿ sij)

2i1/2; �2 = h(�ij ÿ Sij)
2i1/2; �3 = h(Sij ÿ sij)

2i1/2� = bond
¯ux; s = theoretical bond valence; S = experimental bond valence; N =
number of bonds around the electronically distorted cation included in
the network used for calculating sij; R1 = h(Vi ÿ

P
jSij)

2i1/2.

ICSD Compound �1 �2 �3 R1

Unstrained structures
100676 CaCO3 Calcite 0.07 0.08 0.02
38233 Cu2O 0.04 0.06 0.02
67453 ZnS Wurtzite² 0.02 0.06 0.05
10286 CaCrF5² 0.02 0.03 0.03
31321 TiO2 Rutile² 0.03 0.05 0.03
60378 ZnS Sphalerite² 0.00 0.04 0.04
15198 CaCO3 Aragonite 0.06 0.04 0.04
9852 TiO2 Anatase 0.05 0.03 0.04
200405 NaClO4² 0.10 0.06 0.05
63364 CsClO4 0.05 0.03 0.05
34243 Ga2O3 0.05 0.05 0.05
16382 CaSO4 0.08 0.06 0.05
9672 MgCaSi2O6 0.06 0.04 0.05

Sterically strained: hydrogen bonds
34401 Mg(OH)2 0.18 0.02 0.21
1914 Li(H2O)3ClO4 0.11 0.07 0.0
34447 KH2PO4 0.13 0.05 0.14

Sterically strained: cation±cation repulsion
201096 Fe2O3 0.09 0.03 0.11
1462 Ti2O3 0.07 0.04 0.03

Sterically strained: lattice incommensuration
75263 LiGaSi2O6 0.07 0.05 0.07 0.09
31005 Mg3(PO4)2 0.08 0.08 0.06 0.10
39159 SrZnGe2O7 0.06 0.06 0.07 0.17
69387 CaZnGe2O7 0.06 0.09 0.10 0.29³
68381 La2CuO4 0.08 0.10 0.17 0.27³

ICSD Compound �1 �2 �3 N

Electronically strained: lone pair
16220 Tl2O 0.01 0.02 0.02 3
2114 As2O3 cubic 0.21 0.22 0.01 3
4108 As2O3 monoclinic 0.23 0.23 0.04 3
1944 Sb2O3 cubic 0.27 0.26 0.01 3

0.23 0.23 0.46 6
2033 Sb2O3 monoclinic 0.35 0.26 0.10 3

0.14 0.24 0.34 5
2374 Bi2O3 alpha 0.44 0.22 0.26 3

0.10 0.19 0.25 5, 6
72366 SeO2 0.59 0.42 0.20 3

0.27 0.33 0.56 6
62898 TeO2 alpha 0.25 0.33 0.31 4

0.24 0.29 0.49 6
78387 I2O5 0.77 0.55 0.28 3

0.26 0.46 0.63 5
9869 TeF4 0.25 0.28 0.13 5

0.18 0.27 0.35 7
26056 TeCl4 0.11 0.21 0.12 6
79 TeI4 0.13 0.16 0.09 6

Electronically strained: transition metals
36408 TiO2 Brookite 0.08 0.06 0.11 6
60767 V2O5 0.25 0.19 0.13 5

0.31 0.22 0.52 6
21064 CaV2O6 0.26 0.11 0.32 6
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mentation of the electrostatic ®eld into link regions
suggests that the link regions can be identi®ed with
chemical bonds. The similarity between the Kirchhoff
equations (6) and (10) and the network equations (12)
and (13) suggests that, since the point charges Qi have
been set equal to the atomic valences Vi, the ¯ux �ij

threading a link region can be identi®ed with the bond
valence sij. We propose the following hypothesis:

Given that the atomic valence Vi is equal to the formal
charge Qi, the ¯uxes linking atoms in the electrostatic
model are the same as the bond valences assigned using
the bond-valence model.

If this hypothesis is correct, the ¯ux in the Coulomb ®eld
provides a rigorous physical de®nition of bond valence,
a quantity which has hitherto been only empirically
de®ned, either in terms of bond length (experimental
bond valence) or in terms of bond topology (theoretical
bond valence). With this new de®nition, Gauss' theorem
corresponds to the valence-sum rule (12), which must
then be rigorously true, and an atom's coordination
number is precisely de®ned as the number of neigh-
bouring atoms which are linked to it by electrostatic ¯ux.

Even though the valence-sum rule (12) can be iden-
ti®ed with Gauss' theorem, it is not possible to derive
the equal-valence rule (13) directly from the energy
conservation equation (10) since the quantity Cij

appears in (10), but no equivalent term appears in (13).
These two equations can only be equivalent if the values
of Cij cancel in (10). As discussed in x3, the values of Cij

depend on the geometry of the array of charges, that is,
on the positions occupied by the atoms in three-
dimensional space and can thus only be calculated if the
geometry of the structure is known. Further, (13) does
not hold for all observed structures, only for those in
which there are no additional constraints causing the
bonds to be strained, i.e. for those structures with �3 �
0.05 v.u. Therefore, it is only for the unstrained struc-
tures, those where (13) is obeyed, that the values of Cij

are expected to cancel. The simplest way to test the
equivalence of (13) and (10) is to compare the ¯uxes �ij

calculated for the array of point charges in unstrained
structures, with the theoretical bond valences sij calcu-

lated using the network equations. In x7 it is shown that
these are the same within the limits of experimental
uncertainty.

Although a rigorous proof that (13) and (10) are
identical in unstrained structures is not possible, their
equivalence can be shown to be plausible. To understand
the origin of the equal-valence rule, it is necessary to
consider the repulsive forces that keep the atoms apart.
These forces are short range, dropping to negligible
values at separations of two or three aÊngstroms, but
becoming very large as the atoms are forced close
together. Originally the repulsive potential was
modelled using an inverse power law potential (Born &
LandeÂ, 1918), but later an exponential potential (15) was
shown to be closer to the correct physical form (Born &
Mayer, 1932)

Wshort range � A: exp�ÿRij=��; �15�

where A and � are ®tted constants.
In order to minimize the Madelung energy the atoms

should be brought as close together as possible, but at
short distances shortening a bond increases the repulsive
energy by more than the electrostatic energy is reduced,
so for a given bond ¯ux the length of a bond is deter-
mined primarily by the repulsive energy. For an atom
surrounded by chemically identical ligands, the
minimum in the total energy will occur when the ligands
are all at the same distance. Under these conditions the
bonds will tend to have identical capacitances as
required if (13) and (10) are to be identical. Although
this is only a qualitative argument, it leads one to expect
that the equal-valence rule (13) will be obeyed in
unstrained structures and it suggests that the correlation
between ¯ux and bond length will have an exponential
form. The similarity between the forms of (14) and (15)
is therefore no coincidence.

It should be pointed out that neither the electrostatic
nor the bond-valence model describes homopolar
bonding, that is the bonding that occurs between two
anions or between two cations. A formal statement of
this constraint is that the graph of the bond network
must be bipartite, containing two different kinds of
nodes, cations and anions, with bonds allowed only
between nodes of opposite sign. One consequence is
that only even-membered rings (loops) are allowed in
the bond networks discussed in this paper.

6. Calculation of the Coulomb ®eld

We have calculated the Madelung ®eld EMadelung and the
bond ¯uxes �ij for over 40 observed crystal structures as
described in the Appendix. The structural information
has been taken from the Inorganic Crystal Structure
Database (ICSD; Bergerhoff et al., 1983) and the
compounds used in this study are listed in Table 1
together with their ICSD collection code and various

Table 1 (cont.)

ICSD Compound �1 �2 �3 N

2899 LiVO3² 0.15 0.10 0.15 4
0.25 0.11 0.36 6

16031 CrO3² 0.54 0.41 0.17 4
0.34 0.44 0.73 6

60821 Mn2O7 0.34 0.30 0.12 4

² Full details of these compounds are given in Table 2. Full details of
the remaining compounds are given in Table S2 which has been
deposited (see footnote on p. 704). ³ The archetype structures used
in the calculation are unstable. The true structures have lower
symmetry.
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®gures of merit. �1 is the root-mean-square difference
between the electrostatic ¯ux �ij and the theoretical
bond valence sij. �2 is the root-mean-square difference
between �ij and the experimental bond valence Sij. �3 is
the root-mean-square difference between the theore-
tical and experimental bond valences and is used to
determine which structures are unstrained. For struc-
tures showing lattice-induced strain we also give the
global instability index R1, which is the root-mean-
square difference between the experimental bond-
valence sums and the atomic valences. R1 measures the
extent to which the valence-sum rule is violated, hence
the extent of the lattice-induced strain (Salinas-Sanchez
et al., 1992), with crystals in which R1 exceeds 0.2 v.u.
generally being unstable. Table 2 lists the electrostatic
¯uxes �ij and the theoretical sij and experimental Sij

bond valences for a selection of typical structures. The
corresponding values for the remaining structures are
given in Table S2.²

7. Discussion

7.1. Unstrained structures

It is convenient to discuss the results according to the
type of strain present. In this subsection the unstrained
structures are discussed. Subsequent subsections discuss
structures with strains that result from steric effects
(x7.2) and structures with electronic anisotropies,
divided into those with cations containing stereoactive
lone pairs (x7.3.1) and those containing transition metal
cations (x7.3.2).

The strains discussed in this paper are all measured
with reference to the theoretical bond lengths deter-
mined using the network equations (12) and (13) toge-
ther with (14). Unstrained structures are therefore
de®ned as those in which the root-mean-square differ-
ence between the theoretical bond valences (sij) and the
experimental bond valences (Sij) does not exceed
0.05 v.u. (�3 in Table 1) and in which there are no
angular distortions of the kind found around cations
with stereoactive lone pairs. It is worth pointing out that
an unstrained structure is not necessarily one with
regular coordination. Coordination spheres in which all
the bonds are equal may be strained and, conversely,
coordination spheres in which the bonds have different
lengths may be unstrained. Crystals with the NaCl
structure may be strained because the expected bond
lengths cannot always be achieved without causing
excessive cation±cation or anion±anion repulsion.
CaCrF5 (Table 2) is an example of an unstrained struc-
ture in which the bonds have different lengths because
the anions are not all equivalent.

Table 2. Bond lengths, electrostatic ¯uxes and bond
valences in selected structures

Rij = bond length, �ij = ¯ux, sij = theoretical bond valence calculated
using the primary coordination sphere, s0ij = theoretical bond valence
calculated using the primary and secondary coordination spheres, Sij =
experimental bond valence.

Rij �ij sij s0ij Sij

CaCrF5 (ICSD 10286; Wu & Brown, 1973)
CrÐF3 � 2 1.848 0.58 0.61 0.60
CrÐF2 � 2 1.918 0.47 0.48 0.49
CrÐF1 � 2 1.940 0.41 0.41 0.47
CaÐF3 � 2 2.215 0.39 0.39 0.36
CaÐF2 � 2 2.292 0.29 0.26 0.30
CaÐF2 � 2 2.390 0.23 0.26 0.23
CaÐF1 2.494 0.17 0.18 0.17

ZnS (sphalerite) (ICSD 60378; Jumpertz, 1955)
ZnÐS � 4 2.345 0.50 0.50 0.54

ZnS (wurtzite) (ICSD 67453; Kisi & Elcombe, 1989)
ZnÐS � 3 2.342 0.48 0.50 0.55
ZnÐS 2.347 0.53 0.50 0.54
ZnÐS 3.914 0.02 ± 0.01

NaClO4 (ICSD 200405; Wartchow & Berthold, 1978)
NaÐO1 � 2 2.386 0.23 0.12 0.21
NaÐO2 � 2 2.518 0.13 0.12 0.14
NaÐO1 � 2 2.644 0.08 0.12 0.10
NaÐO2 � 2 2.707 0.07 0.12 0.09
ClÐO1 � 2 1.432 1.59 1.75 1.72
ClÐO2 � 2 1.437 1.61 1.75 1.69
ClÐO2 � 2 3.392 0.18 ± 0.01
ClÐO1 � 2 3.863 0.04 ± 0.00
ClÐO2 � 4 4.269 0.03 ± 0.00

TiO2 Rutile (ICSD 31321; Gonschorek, 1982)
TiÐO � 4 1.948 0.64 0.67 0.70
TiÐO � 2 1.981 0.68 0.67 0.64
TiÐO � 4 3.487 0.03 ± 0.01

CrO3 (ICSD 16031; Stephens & Cruickshank, 1970)
CrÐO3 1.576 1.16 2.00 1.00 1.80
CrÐO2 1.580 1.31 2.00 1.00 1.78
CrÐO1 � 2 1.748 0.96 1.00 1.00 1.13
CrÐO3 3.218 0.62 ± 1.00 0.02
CrÐO2 3.341 0.34 ± 1.00 0.02
CrÐO2 � 2 3.581 0.17 ± ± 0.01
CrÐO3 � 2 3.913 0.09 ± ± 0.00
CrÐO1 � 2 4.166 0.03 ± ± 0.00
CrÐO3 4.264 0.02 ± ± 0.00
CrÐO1 � 2 4.547 0.03 ± ± 0.00

LiVO3 (ICSD 2899; Shannon & Calvo, 1973)
Li1ÐO2 � 2 1.997 0.20 0.20 0.08 0.24
Li1ÐO1 � 2 2.125 0.18 0.15 0.29 0.17
Li1ÐO1 � 2 2.339 0.12 0.15 0.29 0.09
Li2ÐO1 � 2 2.106 0.31 0.28 0.34 0.18
Li2ÐO3 � 2 2.166 0.14 ÿ0.10 0.03 0.15
Li2ÐO2 � 2 2.670 0.05 0.32 0.18 0.04
VÐO2 1.629 1.33 1.48 0.70 1.60
VÐO1 1.662 1.32 1.42 1.07 1.46
VÐO3 1.764 0.93 1.05 0.91 1.11
VÐO3 1.848 0.85 1.05 0.91 0.89
VÐO2 3.051 0.26 ± 0.70 0.03
VÐO2 3.247 0.12 ± 0.70 0.02
VÐO3 3.565 0.07 ± ± 0.01
VÐO2 3.625 0.05 ± ± 0.01

² Supplementary data for this paper are available from the IUCr
electronic archives (Reference: SH0127). Services for accessing these
data are described at the back of the journal.
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Fig. 4 shows the correlation between the electrostatic
¯uxes �ij and the experimental bond valences Sij, for the
unstrained structures listed in Table 1. The graph is
similar if the ¯uxes are plotted against the theoretical
bond valences since the experimental and theoretical
valences are, by de®nition, very similar for these struc-
tures. The correlation is remarkably good, thus
supporting the hypothesis that the bond valences and
electrostatic ¯uxes are the same. Only for the strongest
bonds are the ¯uxes a little smaller than the bond
valences and this is a consequence of the appearance in
the Madelung ®eld of a number of very weak bonds
between atoms that are not normally considered to be
part of the coordination sphere. We refer to these as
`tertiary bonds', recognizing that the term `secondary
bond' has been used in a different sense to describe the
weak bonding found around cations with stereoactive
lone pairs (Alcock, 1972, see x7.3.1). Examples of
tertiary bonds can be found in a number of the
compounds listed in Table 2, particularly NaClO4, and
they appear in Fig. 4 on the vertical axis. The diversion
of ¯ux from the primary bonds into the tertiary bonds
accounts for the small systematic differences shown in
Fig. 4.

The idea that some of the longer cation±anion
distances might contribute to weak, but signi®cant,
chemical bonding was proposed by Alig & TroÈ mel
(1992) using a de®nition of coordination number based
on the Frank-Kasper construction. Their suggestion is
con®rmed by the present observation that atoms sepa-
rated by as much as 3 or 4 AÊ can be linked by electro-
static ¯ux, although there is not a one-to-one correlation
between the bonds found using the Frank-Kasper
construction and those de®ned by the Madelung ®eld.

The relationship between primary and tertiary bonds
can be seen in Fig. 5, which shows the regions subtended
by different bonds on the equipotential sphere that
surrounds the Ti4+ ion in rutile. The six primary bonds
clearly occupy the major portion of the surface, the
tertiary bonds being con®ned to a thin section close to
the (001) mirror plane between the primary bonds. Fig. 6
shows the lines of ®eld in this plane. The large blank
section between the O atoms is a boundary between two
bond regions that lie above and below the plane, hence,
by symmetry, it is a plane devoid of ®eld lines. Bordering
this region are four tertiary bonds and, although they
occupy a large amount of space in this section, exam-
ination of Fig. 5 shows that they do not extend very far
perpendicular to this plane. They represent a small
leakage of ¯ux between the primary bonds to atoms
whose proximity is an accident of the crystal geometry.
Because the tertiary bonds are necessarily much longer
than primary bonds, they all have lengths corresponding
to very small experimental bond valences, generally less
than 0.03 v.u.

In unstrained structures there is usually a clear
distinction between the primary bonds, those normally
included in the chemical description of a compound and
the much longer tertiary bonds. The latter are typically
longer than 3 AÊ and generally quite weak, with ¯uxes of
less than 0.03 v.u. Primary and tertiary bonds are further
distinguished by the fact that good agreement between
the theoretical and experimental bond valences can only
be obtained if the tertiary bonds are omitted from the
network calculation, that is, the geometry of the primary
coordination sphere is determined only by the topology
of the primary bonds. The presence or absence of
tertiary bonds has only a minor effect on the geometry.
Tertiary bonds are only found where there are oppor-
tunities for ¯ux to reach second-neighbour anions. This
is well illustrated by the differences in the bonding

Fig. 4. Flux versus experimental bond valence for unstrained structures.

Fig. 5. A representation of opposite sides of an equipotential sphere
around a Ti atom in rutile. Every point represents the starting point
of a ®eld line. Points representing ®eld lines to different atoms are
shown with a different colour. The lines show the boundaries of the
bond regions on the equipotential sphere.
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found in the sphalerite and wurtzite forms of ZnS (Table
2) illustrated in Fig. 7. The primary coordination in ZnS
is determined by the properties of the Zn2+ and S2ÿ ions,
namely Zn2+ is four-coordinate, so that in both struc-
tures Zn2+ is tetrahedrally surrounded by four S2-

neighbours at essentially the same distance. The differ-
ences between the structures arise from the different
ways in which these tetrahedra are arranged. In the
cubic sphalerite structure all the tetrahedral faces are
shared with octahedral cavities, one of which is shown in
Fig. 7(a), but in the trigonal wurtzite structure one face
is shared with a vacant tetrahedral cavity which places
an S2ÿ ion directly over the shared face (Fig. 7b),
allowing ¯ux to leak through this face to the S2ÿ ion in
the second coordination sphere. The wurtzite form
therefore contains one tertiary bond, while the spha-
lerite form contains none.

Tertiary bonds are found around many cations, but
whether they will occur in any particular compound is
determined by details of the crystal structure. The
number of tertiary bonds tends to increase with the
bonding strength of the cation, that is, more tertiary
bonds are likely to be found around highly charged
cations with low coordination number, such as Cl7+ in
ClOÿ4 . The diversion of ¯ux from primary to tertiary
bonds around these cations is responsible for the rela-
tively low values of the ¯uxes found for the strongest
bonds illustrated in Fig. 4.

One should be cautious in ascribing too much signif-
icance to the tertiary bonds. Their ¯uxes are small and
could be signi®cantly altered by changes in the model,
such as including Emult or Elocal in the ¯ux calculation or
by changing the method by which the ¯ux is calculated.
More work is needed to clarify their role in crystal
chemistry.

7.2. Sterically strained structures

Steric strains arise from a number of factors, such as
non-bonded repulsions and lattice incommensurations,
which are related to the way in which the atoms pack
together in a crystal.

The asymmetry found in hydrogen bonds, for
example, is a consequence of repulsion between the
donor and acceptor anions which keeps the hydrogen
bond long (Brown, 1995). Owing to this strain, which
ensures that the H atom will bond unequally to its two
(or more) neighbours, the theoretical bond valences are
expected to differ considerably from the experimental
valences (see �3 in Table 1). However, the agreement
between the experimental valences and the ¯uxes,
indicated by �2 in Table 1, is satisfactory, given the
dif®culties in determining the positions of the H atoms
and the consequent dif®culties in assigning good
experimental valences. We have examined only three
hydrogen-bonded crystals, recognizing that hydrogen
bonds deserve a far more extensive treatment than we
can give them in this paper. Apart from con®rming that
there is a reasonable agreement between the ¯uxes and
the experimental bond valences, there are few surprises.
In Mg(OH)2, as expected, each H+ ion forms three weak
links (0.08 v.u.) to O2ÿ ions in the adjacent layer. The
only new feature that appears in our calculations is the
bifurcated hydrogen bond, shown in Fig. 8, that occurs
with the double hydrogen bonds found in KH2PO4.

Two compounds with cation±cation repulsion (both
with the corundum structure) have been examined. The

Fig. 8. Bond ¯uxes in KH2PO4 illustrating that the donor O atoms in
the PO3ÿ

4 ion also act as hydrogen bond acceptors.

Fig. 6. A representation of the valence ®eld of rutile (TiO2) in the
crystallographic (001) mirror plane at z = 0. The conventions are the
same as in Fig. 1.

Fig. 7. The environment of Zn2+ in ZnS in (a) the sphalerite structure
and (b) the wurtzite structure. The large circles represent S2ÿ, the
small circles Zn2+. The letters A, B and C refer to the stacking
sequence of close-packed S2ÿ layers. The broken line represents the
tertiary bond.
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cations in Fe2O3 and Ti2O3 lie at the centre of oxygen
octahedra which are associated in pairs sharing a
common face. The cations repel each other across this
face, resulting in three long and three short cation±
oxygen bonds. Since the network equations assign the
same valence (0.5 v.u.) to all bonds, the agreement
between the theoretical and experimental bond
valences, �3, is poor. However, within experimental
uncertainty, the experimental valences and the ¯uxes are
the same (�2 < 0.05 v.u.)

A third type of steric strain is found in structures in
which the crystallographic repeat can only be main-
tained if some of the bonds are stretched and others
compressed, a condition frequently encountered in the
perovskite-related structures. These strains are respon-
sible for many unusual properties such as ferroelectricity
and superconductivity (Brown, 1991). As a result of a
strain in which the bonds around some atoms are
stretched while the bonds around other atoms are
compressed, the valence-sum rule is typically violated so
that a good estimate of the degree of strain is given by
the Global Instability Index R1, which is the root-mean-
square deviation of the experimental bond-valence sums
from the atomic valences (Salinas-Sanchez et al., 1992).
If the strain is suf®ciently large (R1 > 0.2) the structure is
unstable. Both CaZnGe2O7 and La2CuO4 (Table 1) exist
as structures with lower symmetry than the archetype
structures used in the present calculations. In spite of the
failure of the valence-sum rule in many of these
compounds, the good agreement between the ¯ux and
experimental bond valence (�2 in Table 1) suggests that
observed structures still obey the equal-valence rule as
far as the constraints allow.

Fig. 9 compares the ¯ux and experimental bond
valence for all sterically strained structures and shows
that the agreement between them is almost as good as
for unstrained structures. In both cases some of the ¯ux
in the stronger bonds has been diverted into the tertiary
bonds and for structures with lattice-induced strain
there is a little more scatter because the experimental
bond valences do not always obey the valence-sum rule.
The good agreement between the experimental bond
valences and the ¯ux, even in cases where the valence-
sum rule is violated, shows that the strain required by
the lattice incommensuration is distributed equally
between the bonds.

7.3. Electronically strained structures

7.3.1. Lone pair cations. Electronically induced strains
arise from asymmetries in the distribution of electron
density around an atom. In these cases Emult will make a
signi®cant contribution to the local ®eld and the ¯ux
determined using EMadelung alone is not expected to
correspond to the experimental bond valence. If we
wished to calculate the true ¯ux linking two atoms it
would be necessary to include Emult, which in turn
requires the inclusion of appropriate point multipoles on
the atoms. In this study only the Madelung ¯ux has been
calculated and it is no surprise that for compounds
containing cations with intrinsically anisotropic electron
distributions there is poor agreement between Made-
lung ¯ux and the experimental bond valences (�2 in
Table 1).

This breakdown can be seen for compounds with
stereoactive lone pairs in Fig. 10, which shows the ¯uxes
of the bonds in I2O5 plotted against the bond lengths.
Also plotted for comparison (broken line) is the corre-
lation between bond valence and bond length given by
(14) using the conventional IÐO bond-valence para-
meters, B = 0.37 AÊ and Ro = 2.003 AÊ (Brown & Alter-
matt, 1985). Although the differences are quite
dramatic, the ¯uxes can be ®tted to the exponential
curve of (14) with B = 0.88 AÊ and Ro = 1.885 AÊ (solid
line). Similar results are found for the other main group
cations in low oxidation state.

For cations with stereoactive lone pairs the electronic
anisotropy corresponds to a point dipole oriented with
its negative pole directed along the lone pair. Adding
this dipole term will decrease the ¯ux of the bonds found
on the lone pair side of the cation and correspondingly
increase the ¯ux of the bonds on the opposite side, thus
strengthening the bonds that are already strong and
weakening the bonds that are already weak. It would
decrease the value of B from 0.88 AÊ to a value closer to
the Brown & Altermatt (1985) value of 0.37 AÊ . Unfor-
tunately, there is no easy way to determine the size of
the dipole that must be added, hence of calculating the
true ¯uxes in the different bonds.

Fig. 9. Flux versus experimental bond valences for sterically strained
structures.
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Alcock (1972) proposed to divide the bonds around
lone pair cations into primary and secondary bonds, the
primary being typically the three or four strongest bonds
and the remainder being secondary bonds. The distinc-
tion between primary, secondary and tertiary bonds in
these compounds is not as clear as it is for unstrained
structures and it is, in general, impossible to classify the
bonds in a rigorous way. In particular, there is little
virtue in trying to distinguish between secondary and
tertiary bonds.

As the electronic strains result in displacements of the
atoms, there is no reason to expect that the theoretical
bond valences will give accurate predictions for the
experimental bond valences. In any case it is not clear if
the theoretical bond valences should be calculated using
only the primary bonds or using both primary and
secondary bonds. For the purposes of comparison, the
calculations reported in Tables 1 and 2 have been
performed in two ways, in the ®rst case excluding, and in
the second case including, the secondary bonds.

7.3.2. Transition metals. Many transition metals show
electronically strained structures, but the pattern here is
different from that shown by the lone pair cations. The
anisotropies related to the Jahn±Teller distortions
around Cu2+ and Mn3+ need to be modelled by point
quadrupoles on the cation and the anisotropies related
to the distortions around the cations with d0 con®gura-
tions need to be modelled by point dipoles on the
ligands since the distortion involves the polarization of
the ligand p electrons into the empty d shell of the cation
(Kunz & Brown, 1995).

Here we focus on the d0 transition metals, of which
V5+ is typical. Table 1 shows that the agreement between
the ¯uxes and the experimental bond valences, given by
�2, while better than for the lone pair cations, is not
perfect. The discrepancies can again be examined by
plotting the ¯ux against the bond length, as shown in
Fig. 11. The points representing the ¯ux lie much closer
to the Brown & Altermatt (1985) curve (broken line)
than was the case for the lone pair cations, although the
¯uxes of the strongest bonds are still smaller than the
experimental bond valences and the longer bonds have a
¯ux that is signi®cantly larger than the experimental
bond valence.

The hypothesis that the ¯uxes and experimental bond
valences are the same cannot be properly tested in
compounds with electronically driven strains because of
the dif®culty of knowing how much the ¯ux will be
altered by the inclusion of the multipoles. The calculated
Madelung ¯ux for these compounds, while interesting,
does not give the full story. There is room for more work
to be performed on these compounds.

8. Conclusions

Our calculations show that, apart from the electronically
strained structures in which multipole terms are clearly
important, the hypothesis that the electrostatic ¯ux and
the experimental bond valence are the same is corro-
borated within experimental uncertainty, the mean
value of �2 for all structures without electronic strain

Fig. 11. The Madelung bond ¯ux±bond length correlation for V5+ÐO
bonds. The broken line shows the Brown & Altermatt (1985)
parameters. The solid line is the best ®t with Ro = 1.768 AÊ and B =
0.53 AÊ .

Fig. 10. The Madelung bond ¯ux±bond length correlation for I5+ÐO
bonds. The broken line shows the Brown & Altermatt (1985)
parameters. The solid line shows the best ®t using Ro = 1.885 AÊ and
B = 0.88 AÊ (14).



PREISER, LOÈ SEL, BROWN, KUNZ AND SKOWRON 709

being 0.05 v.u. Even in electronically strained structures
there is reason to believe that the hypothesis would be
obeyed if the effects of the multipoles could be included.

For unstrained structures the two network equations,
which correspond to Gauss' theorem and the law of
conservation of energy, give good predictions for the
bond valences and ¯uxes, indicating that at equilibrium
the atoms adjust themselves so that all bonds have the
same capacitance, Cij. In these compounds EMadelung

gives a good description of both the short-range and
long-range bonding. Even for electronically strained
structures the long-range effects continue to be correctly
described by EMadelung. The local ®eld, which includes
Emult, may be responsible for the distortions in the
positions of the atoms, but the information about these
distortions can only reach distant parts of the crystal
through the changes they produce in EMadelung. Omitting
the Emult term from our calculations means that they do
not correctly describe the local ®eld, but they still give a
correct description of the long-range in¯uences that are
mediated through Gauss' theorem and hence the
valence-sum rule (12).

The results of our study con®rm the correctness of the
hypothesis that the electrostatic ¯ux linking any two
atoms in an inorganic crystal can be identi®ed with the
bond valence. This gives a de®nition for bond valence
which requires that the valence-sum rule (12) be exactly
obeyed. Failure of the experimental bond valences to
obey this rule can be attributed either to a failure of (14)
to describe adequately the interatomic repulsion or to
geometric constraints in the crystal that prevent the
bonds from adopting their chemically ideal lengths.
Deviations of the experimental bond valences from their
expected values do not therefore indicate a weakness of
the model but, on the contrary, provides speci®c infor-
mation about the condition of the crystal.

It has been traditional in inorganic compounds to
distinguish between ionic bonds, in which electrons are
assumed to be transferred from the cations to the
anions, and covalent bonds, in which the electrons are
shared equally between the atoms. In practice, it is
never easy to de®ne the exact degree of ionicity or
covalency of a given bond and there is consequently
confusion over which is the appropriate model to use.
The distinction has been further blurred by the
remarkable recent successes of the ionic model in
describing structures such as silicates which quite
clearly involve covalent bonds (Catlow, 1997). What is
frequently overlooked is that the two models are not
mutually exclusive in the sense that real bonds are
composed of some mixture of ionic and covalent
bonding, but that almost all bonds in inorganic solids
can be described by either model. A quantitative
prediction using the covalent model requires solving
the SchroÈ dinger equation for the crystal, but this
solution provides a correct description for both ionic
and covalent bonds (Bader, 1990). The ionic model is

an alternative approach to the same problem which
can be applied in any situation in which there is a
large Madelung ®eld. It simpli®es the calculation by
separating the easily calculated classical electrostatic
part of the problem from the quantum mechanical
part, the latter being treated using the empirically
®tted potential Wshort range. In this paper we have used
the ionic model to justify the bond-valence model.
Burdett & Hawthorne (1993) have provided a similar
justi®cation based on covalent bonding ideas.

The present analysis shows the fallacy of de®ning
ionic and covalent bonding in inorganic materials by the
supposed location of the valence electrons in the bond.
The distinction that should be made is not where the
electrons reside in the bond, but whether the charged
atoms have spherically symmetric electron densities. If
the atoms carry a charge and are spherically symmetric,
Emono will be much larger than Emult and will dominate
the Coulomb ®eld. In this case the ionic or electrostatic
model will give a good description of the structure,
regardless of where the electrons appear in the bonds. If
Emult makes a signi®cant contribution as in electronically
strained structures, the ionic model has more dif®culty
predicting the local environments of the atoms, but will
continue to describe the long-range effects correctly.
Only when Emono becomes much smaller than Emult will
the ionic model fail. This situation will occur when the
atoms are far from spherical or when they carry only a
small net charge, conditions that are found in metals and
many organic compounds. In these cases the ionic model
may still be applicable, but it must be used with
circumspection.

The distinction between spherical and non-spherical
atoms is related to the distinction made by Pearson
(1973) between hard and soft atoms. Atoms towards the
top and left of the periodic table are hard, that is, they
are not easily polarized and remain spherical. Those
towards the bottom and right, and in particular some of
the transition metals, tend to be soft, that is they are
easily polarized and may give rise to large multipole
terms in the electrostatic ®eld. Thus, ionic models such
as the bond-valence model are expected to work well
when the atoms are hard, even for covalent compounds
such as silicates, phosphates and sulfates.

By separating the problem of chemical bonding into
classical and quantum mechanical components, the
classical (Coulomb) part can be easily and rigorously
solved, leading naturally to the concept of a localized
chemical bond. The quantum mechanical part is short
range and treated empirically, but in this paper we show
that for equilibrium structures, the solutions that can in
principle be found to the SchroÈ dinger equation obey
remarkably simple and intuitive rules. Combining the
empirical quantum mechanical results with the rigorous
classical theory provides insights that can lead to a
better understanding of the complexities of chemical
bonding.
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APPENDIX A

In order to determine �ij between the atoms i and j, a
small equipotential sphere of radius rs is constructed
around atom i. All the lines of ®eld that connect the two
atoms will pass through an area Aij on this sphere, and
since the ®eld is uniform over the sphere, �ij will be
proportional to Aij. In order to determine Aij it is only
necessary to ®nd its boundaries which can be performed
by calculating the paths of a suf®ciently large number of
lines that pass through the surface.

In order that the equipotential surface can be treated
as a sphere it must have a small enough radius. In most
cases rs = 0.01 AÊ was found to be adequate. The points
on the sphere are described in a spherical coordinate
system (�, ') with 0 � � � � and 0 � ' � 2�. If n
equidistant points are chosen for � and m equidistant
points for ', the following (n ÿ 1)m starting points are
obtained: (�k,'l), where �k = �k/n, k = 1,...,n ÿ 1; 'l =
2�l/m; l = 0,...,m ÿ 1.

The values of n and m were normally chosen either as
(19, 40) or (29, 60). The lines of ®eld are calculated using
the gradients of the electrostatic potential U. For a given
distribution of point charges qi at the points ri in three-
dimensional space, the electrostatic potential U at an
arbitrary point r is de®ned by

U�r� �Pifqi=�4�"o�rÿ ri��g: �16�
The electrostatic ®eld E is de®ned by

E � ÿgrad�U�r�� �17�
or

E � ÿ��U�x; y; z�=�x; �U�x; y; z�=�y; �U�x; y; z�=�z�:
�18�

U(r) is calculated using the Ewald method (Ewald, 1921)
and the gradient at r is determined by calculating its
three ®rst derivatives. A Cartesian coordinate system is
established with its origin at r and the potentials are
calculated at the six points r + d with d = (",0,0),
(ÿ",0,0), (0,",0), (0,ÿ",0,), (0,0,",) and (0,0,ÿ"), " being
a small distance whose size can be varied. In order to
calculate the potentials the gradient is assumed to be
given by (dx,dy,dz), where

dx � �U�"; 0; 0� ÿ U�ÿ"; 0; 0��=2";

dy � �U�0; "; 0� ÿ U�0;ÿ"; 0��=2"

dz � �U�0; 0; "� ÿ U�0; 0;ÿ"��=2": �19�
The local coordinates are then transformed to crystal
lattice coordinates.
" was varied during several calculations and a value of

0.001 AÊ was found to be satisfactory. After the gradient
at (�,') on the sphere is calculated, the ®eld line through
this point is approximated by a small linear step in the
direction of the gradient. The step length can be varied,
but a length of 0.01 AÊ is usually suf®cient. Only where

the lines are strongly curved was a smaller length
necessary. After the ®rst step the gradient at the new
point is calculated and the process repeated. After a
number of steps (depending on the length of the steps) it
was possible to determine to which atom, j, the line
would go. The calculation was stopped when the
strength of the ®eld exceeded a predetermined value. In
this way, for each of the chosen starting points on the
sphere the corresponding destination atom was deter-
mined. Since the boundary between two bonding
regions must lie between two adjacent points that
terminate on different atoms, the points (0.5(�k + �k+1),
'l) and (�k, 0.5('l + 'l+1)) were taken as an approx-
imation to the boundary. If higher accuracy is needed
the boundary region can be examined using a ®ner grid
of starting points. �ij is then calculated as

�ij � AijVi=�4�r2
s �: �20�

A number of numerical artifacts occurred depending on
the choice of the number of terms in the Ewald series for
calculating the potentials, the accuracy of the numerical
calculation of the derivatives, the radius of the equipo-
tential spheres and the length of the steps along the lines
of ®eld. In the neighbourhood of a boundary, ®eld lines
were sometimes found that terminated on atoms that
were not normally considered to be bonded. Some of
these correspond to the tertiary bonds discussed in the
text, but some were found to be artifacts of the calcu-
lation. In most cases the latter disappeared when the
calculation was performed with higher accuracy. Bond
regions represented by a single ®eld line were generally
ignored.
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